

Demystifying BMS Hardware-In-the-Loop (HIL) Testing

Overview

- Introduction
- BMS HIL background
- Test methodologies
- Instrumentation and connectivity
- HIL test software for IO control
- User interfaces
- Test scripting & data logging
- BMS HIL test scenarios

• Q&A

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BLOOMY QUICK FACTS

- Founded in 1992
- Automated testing equipment
 - Battery test & simulation (BTS)
 - Trans/Aero/Def Simulation systems (SIMS)
 - Universal manufacturing electronics functional test (EFT)
- NI Platinum Alliance Partner
 - Published "The LabVIEW Style Book" © 2007, Prentice Hall
 - "BMS HIL Test System Helps JLR Shorten Time-to-Market" Graphical Systems Design Award in 2016

Bloomy BMS HIL Tester

- Modular hardware and software
- <u>Open</u> platform
 - Based on COTS components
 - Bloomy BS1200 Cell Simulator
 - Maintainable & modifiable
 - Design documentation & source code provided
- Built on over a decade of BMS testing experience

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

What is the BMS?

Battery Management System

- Monitor cell V, I and T
- Estimating the SoC and SoH
- Controlling the rate of charging and discharging
- Cell balancing
- Monitoring alarm levels and pack voltage
- Managing critical safety functions
- Controlling the contactor(s)
- Communicating to the ECM and other ECUs

BMSs come in many different flavors

- Module and pack configuration
- Topology, series/parallel
- BMS optimized for end user profile
 - EV, grid, UPS, consumer electronics

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

What is HIL testing?

- HIL = Hardware In the Loop
- Technique for development and test of embedded control systems
 - Mathematical model of processes
 - Simulation of sensor and control signals
 - Measurements fed back into model
- Facilitates testing electronic controls without the actual plant
- BMS HIL Simulator simulates battery and other EV subsystems
- Cell model is derived through characterization
 of real cells

What does a BMS HIL system consist of?

illill

<u>Hardware</u>

- Computing
 - Real-time
 - Windows
- Instrumentation
 - Simulation
 - Measurements
 - Comms

BattSim	BMS 1 soc	Thermistor Sim
Manual Voltage Current Steptoris Readback Readback Control 81 42V 0V 0mA III 82 42V 0V 0mA IIII 83 0V 0V 0mA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Court C Cell 1 Voltage C Cell 2 Voltage C Cell 2 Voltage C Cell 3 Voltage C Cel	Actual Manual Serpoins Conversal Interface 2 20 Therministor 2 0 20 Therministor 2 0 20 Therministor 4 0 20 Therministor 4 0 20 Therministor 5 0 20 Therministor 6
1 1/2 1/2 0/2 0/4 0 1/2 0/2 0/2 0/4 10 1/2 0/2 0/2 0/4 12 1/2 0/2 0/2 0/4 13 1/2 1/2 0/2 0/4 14 1/2 0/2 0/4 0/4	Cell 3 Voltage Cell 3 Voltage Cell 10 Voltage Cell 10 Voltage Cell 11 Voltage Cell 12 Voltage Cell 12 Voltage Cell 12 Voltage Cell 14 Voltage	Actual Manual Setpoint Setpoint Setpoint Control Contr
15 42 V 0 0 V 0 mA 16 42 V 0 0 V 0 mA Pack Setpoint 0	Cell 15 Voltage Pack_Voltage e O Cell 16 Voltage CAN 12V Power	0 Vima Pack Voltage Measure

<u>Software</u>

- Real-Time deterministic
 - IO & comms control
 - Model execution
 - High speed data logging
- Windows
 - Configuration
 - User Interfaces
 - Test Scripting

BMS HIL Test Objectives & Benefits

Objectives

- Validate functionality
 - Hardware & Firmware
- Tune algorithms
- Ensure BMS safety
- Check response timing
- Test edge cases

Benefits

- Operator & product safety
- Explicit repeatability
- Reduced test time
- Extended test coverage
- Faster time to market

BMS HIL METHODOLOGY

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS and Module Interaction

BLOOMY

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

HIL Testing at the Module Level

- Simulate series cells
- Output cell voltages
- Provide balancing currents
 - Passive balancing (source)
 - Active balancing (sink/source)
- Simulate thermistors

HIL Testing at the Module Level With Fault Insertion

- In-line Fault Insertion Unit (FIU)
- Open/broken wire faults
- Short to rail faults
- Connect to DMM
- Shorted cell (BS to OV)

HIL Testing of the entire system

- BMS in the "real world"
- Simulate/monitor all IO
 - Cells
 - Pack V & I
 - Contactors
 - Environmental
 - Vehicle/system
 - Communications
- Low power, inherently safe

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

Pack Voltage

BMS HIL INSTRUMENTATION AND CONNECTIVITY

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL Instrumentation Overview

BMS HIL Hardware Block Diagram

BLOOMY

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL Signals

Signal Type	Qty	Description	Details
Vehicle/CAN power & interlocks	1-3	12V or 24V main power	Programmable Power Supply
Cell Simulation	12- 200	Simulation of individual cells	0-5VDC Sink/Source 500mA
Temperature Simulation	8-32	Simulation of cell/pack temperatures	Analog Voltage (+/-10V) Resistance (0-65k Ω)
Pack Current Simulation	1	Simulation of full pack current (eg 400A)	Analog Voltage (+/-10V) Programmable PS (up to 150A)
Vehicle Discretes	2-4	Controlling ignition, interlock, enable, CAN power	Fixed power supply with industrial digital output control
Comms	1-4	BMS-Vehicle, Module, etc	CAN, LIN, Serial, IsoSPI
Contactors	2-4	Simulation of contactors to verify BMS control	Fixed resistance with industrial digital inputs for monitoring
Insulation Resistance sim	1-2	Simulating HV resistance to test BMS monitor circuits	Fixed resistors with high voltage switching
Misc BMS IO	4-12	Misc analog/digital inputs and outputs to/from BMS	Analog/digital inputs and outputs for simulation/monitoring

BMS HIL SOFTWARE

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL Software Components

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL Software – Real-Time Engine Execution

BLOOMY

BMS HIL Software – Real-Time Engine Configuration

- Instrumentation Interfaces
 - DAQ, BattSim, FIU
 - Switching, Power Supplies
- User and calculated channels
- BMS Communications
 - Serial, CAN Databases
- Models
 - Cell, vehicle, contactors
- Procedures
 - Startup, alarm, safety
- Channel mapping

Controller 🖃 🚥 Hardware 🖃 🌍 Chassis 🖃 🌃 DAQ 🕀 💋 🕀 🗄 💋 ISO_AO 🗄 💋 MF DAQ 🔛 Waveform Tasks 🕿 Data Sharing FPGA 🖃 👹 NI-XNET ⊞
 ⊞ CellSim 1-24
 FlexRay **9** Timing and Sync SLSC 🗑 🗄 🙀 Custom Devices 🖃 👹 User Channels E CellSimGlobals 🗄 🛅 CellSimTriggers 🗄 🫅 DirectControl Generation Mux Selectors fr Calculated Channels Stimulus Alarms Procedures XNET Databases System Channels

BMS HIL Software – Model Integration

- Models define behavior of outside world
 - Cells, thermal, pack
 - Contactors, vehicle/system
- Models close the loop
- Provide "real world" testing
- Mimic the response of real batteries
- Tune algorithms and response of BMS

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

Model Development Options

Sheikh, Muhammad & Baglee, David & Knowles, Michael & Elmarakbi, Ahmed & Al-Hariri, Mohammad. (2015). A Novel Approach for Predicting Thermal Runaway in Electric Vehicle Batteries When Involved in a Collision. 10.1115/IMECE2015-51781.

Model Integration into HIL Environment

Develop & compile model

	Ī	.0	<u>a</u>	d	i	n	tc)	
9	n	V	ir	<u> 0</u>	<u>٦r</u>	n	<u>e</u>	n	<u>t</u>

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL Software – Cell Model Example

Advantages of Model-Based BMS Testing

- Evaluate different cell chemistries/suppliers
- Evaluate different BMS architectures and tune algorithms
- Incorporate interaction with other vehicle systems
- Repeatably test real-world and edge condition scenarios
 - Impossible, impractical, too dangerous, or too expensive

https://www.mathworks.com/solutions/power-electronics-control/battery-models.htm

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL USER INTERFACES

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL Software – Engine User Interfaces

Engine User Interfaces

- Windows-side client
- Socket into RT execution
- Peek/poke system channels
- Intuitive view into system state
- Direct hardware control
- BMS interface control
- Model-based control

BMS HIL Software – Automated Test Operator Interfaces

Automated Test User Interface

- Windows-side client
- Intuitive automated test selection
- Simplifies test execution
- Trace execution
- Advanced debugging
 - Single stepping, looping
 - Pause, terminate

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL TEST SCRIPTING AND DATA LOGGING

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL Software – Automated Sequencing

- Python, NI TestStand, etc
- Test script development & execution
 - Sequential scripts, flow control
 - Pass/fail determination
 - Results collection
- Interact with real-time system
 - Get/Set channel values
 - Control model setpoints
- Automate common tasks/tests
- Tests are non real-time

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

def

BMS HIL Software – Real-Time Sequencing

- RT engine-based
- Stimulus profiles
 - High speed drive cycle playback
 - CSV-based channel control
- Real-time sequencing
 - Set/read channels
 - Pass/fail determination
 - Flow control
- Execute in Real-Time
- High-speed channel data logging

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL Software – Data Logging

Automated test script results

- Discrete measurements
- Pass/fail data
- XML, CSV, or Excel files
- Database storage

Real-time channel logging

- At PCL rate (400 1000Hz)
- Any real-time channel
- CSV, Excel, TDMS

BMS HIL TEST SCENARIOS

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

Cell Voltage Verification and Balancing Test

Setup (5)
 BMS Cell Balancing Test

 Set all cells to nominal voltage
 set one cell to balancing voltage
 verify all cell currents & query balancing states from BMS

 if TestChannel = 0, prompt for channel to test

 if
 Select cell to test
 End
 End

Main (18)
 Set All Cell Voltages to Nominal

Set Cell y to Balancing

Verify currents
Readback all cell V & I from simulators
For
If this is the balancing channel, use balancing limits
I f
I Verify Cell x Balancing Current
otherwise use nominal limits
T Ese

Disc
 O Verify Cell y Nominal Current with Cell x Balancing
 End

♦ End

Kerify BMS Data Balancing States Query Health Alerts Verify Balancing On

<End Group>

Cleanup (3)
Set BMS x All Voltages to Nominal

🚵 Query Health Alerts

Verify Balancing returns OFF

<End Group>

- Set one cell at a time to balancing voltage
- Verify Balancing V & I from BS1200
- Verify BMS response (status & meas)

	BattSim	BMS	CAN 12V Power Ignition
Cell 1	Manual Actual Voltage Current Setpoints Readback Readback Conn	Balancing Pack Onboard Temp 224 4205 Cell 1 Voltage	Actual Manual Setpoints Setpoints Connected Th1 Fault
Cell 2	4.2 V 4.2 V 4.201 V 14.9 mA	4.201 Cell 2 Voltage Temp_2 20.1	20 20 Thermistor 2
Cell 3	4.25 V ▲ 4.25 V 4.251 V 278 mA	3.994 Cell 3 Voltage Temp_3 20.2	20 20 📮 Thermistor 3
Cell 4	4.2 V ▲ 4.2 V 4.200 V 14.8 mA	4.199 Cell 4 Voltage Temp_4 19.9	20 20 📮 Thermistor 4
Cell 5	4.2 V ▲ 4.2 V 4.199 V 15.2 mA	4.199 Cell 5 Voltage Temp_5 20.1	20 20 🗧 Thermistor 5
Cell 6	4.2 V 4.2 V 4.201 V 14.9 mA	4.200 Cell 6 Voltage Temp_6 20.1	20 20 📮 Thermistor 6
Cell 7	4.2 V 4.2 V 4.198 V 15.1 mA	4.202 Cell 7 Voltage Contactors	Canal
Cell 8	4.2 V 4.2 V 4.201 V 15.1 mA	4.199 Cell 8 Voltage	CI Meas
Cell 9	4.2 V 4.2 V 4.199 V 14.9 mA	4.203 Cell 9 Voltage	C2 Meas
Cell 10	4.2 V 4.2 V 4.199 V 14.8 mA	4.200 Cell 10 Voltage	Cs Meas
Cell 11	4.2 V ▲ 4.2 V 4.201 V 15.1 mA	4.204 Cell 11 Voltage	Current Sim
Cell 12	4.2 V ▲ 4.2 V 4.200 V 15.3 mA	4.205 Cell 12 Voltage SoC 92.8	Actual Manual
	Pack Setpoint	Pack_Current 0 Pack_Voltage 50.101	Setpoint 0 50.398 Vms Pack Voltage Measure

Over/Under Voltage Protection Test

- Set one cell at a time to over/under voltage
- Verify BMS contactor outputs
- Verify BMS response (status & meas)

Temperature Trip Test

- Set one thermistor at a time to over/under Temp
- Verify BMS contactor outputs
- Verify BMS response (status & meas)

		Batt	tSim				BN	IS		C,	AN 12V	Power	Ignition
	Manual Setpoints	Actual Setpoints	Voltage Readback	Current Readback	Conn		Temperature To	o High Onboard Temp	22.4	Act Setpo	The ual pints	ermisto Manual Setpoints	or Sim
Cell 1	4.2 V 💌	4.2 V	4.202 V	15.1 mA		4.205	Cell 1 Voltage	Tamp 1	155		160	Connected	Th1 Fault
Cell 2	4.2 V 💌	4.2 V	4.201 V	14.9 mA		4.201	Cell 2 Voltage	Temp_1	20.1		20	20	Thermistor 2
Cell 3	4.2 V 🛋	4.2 V	4.199 V	15.2 mA		4.202	Cell 3 Voltage	Temp_3	20.2		20	20	Thermistor 3
Cell 4	4.2 V 🔺	4.2 V	4.200 V	14.8 mA		4.199	Cell 4 Voltage	Temp_4	19.9		20	20 💂	Thermistor 4
Cell 5	4.2 V 💌	4.2 V	4.200 V	15.2 mA		4.199	Cell 5 Voltage	Temp_5	20.1		20	20 💌	Thermistor 5
Cell 6	4.2 V 💌	4.2 V	4.201 V	14.9 mA		4.200	Cell 6 Voltage	Temp_6	20.1		20	20 💌	Thermistor 6
Cell 7	4.2 V 💌	4.2 V	4.198 V	15.1 mA		4.202	Cell 7 Voltage	Ca	ontactors				
Cell 8	4.2 V 💌	4.2 V	4.201 V	15.1 mA		4.199	Cell 8 Voltage		C1		1 Meas	5	
Cell 9	4.2 V 💌	4.2 V	4.199 V	14.9 mA		4.203	Cell 9 Voltage				.2 Meas	5	
Cell 10	4.2 V 💌	4.2 V	4.199 V	14.8 mA		4.200	Cell 10 Voltage		C3 ()	\bigcirc	.3 Meas)	
Cell 11	4.2 V 💌	4.2 V	4.201 V	15.1 mA		4.204	Cell 11 Voltage			C	urror	at Cina	
Cell 12	4.2 V 💌	4.2 V	4.200 V	15.3 mA		4.205	Cell 12 Voltage	SoC	92.8	Actu	al al	Manual	
	ſ	Pack Setpoir	nt					Pack_Current Pack_Voltage	0	Setpo	0 8 Vrms	Setpoint 0	ge Measure

Pack Current Trip Test

- Set pack current over threshold
- Verify BMS contactor outputs
- Verify BMS response (status & meas)

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

Fault Response Tests

- Inject hardware faults
- Verify BMS response (status & meas)
- Verify contactor outputs
- Faults include:
 - Cell (open, short, short to rail/gnd)
 - Thermistor (open, short, short to rail/gnd)
 - Comms (bad data, short to rail/gnd)
 - Insulation resistance

Charge/Discharge Test

f(x) Set Start Time Read back BMS Data Log Initial SoC

Set Pack to Discharge Current f(x) Init interval count Q While

Wait Log Interval Read back BMS Data Log SoC (Interval x)

If SoC hit

↓ Goto DoneLooping
 ◆ End
 ƒ(2) Increment Count
 ◆ End

DoneLooping
 f(x) Set End Time
 Shut Off Pack Current
 Read back BMS Data
 Final SoC
 Discharge Time

- Ideally with model in the loop
- Set pack current to 1C, 2C, 3C, etc
 - Discharge, then charge
- Monitor BMS from $95\% \rightarrow 5\% \rightarrow 95\%$ SoC
- Compare against model/expected SoC
- Monitor BMS outputs and alarms

	BMS Readback Data	Cell 1 Voltage	4.0992	4.1087	Cell 9 Voltage	Temp_1	2
` o '		Cell 2 Voltage	4.0978	4.1068	Cell 10 Voltage	Temp_2	2
		Cell 3 Voltage	4.097	4.1026	Cell 11 Voltage	Temp_3	2
300 • 300-	BMS-Status	Cell 4 Voltage	4.1017	4.0959	Cell 12 Voltage	Temp 4	24.
9210%	balancing Pack	Cell 5 Voltage	4.1026	4.0948	Cell 13 Voltage	Temp 5	25
Pack Current Cell Model SoC	0.1 Pack_Current	Cell 6 Voltage	4.2597	4.1064	Cell 14 Voltage	Temp_5	2.5
	90.28 SoC	Cell 7 Voltage	3.761	4.1117	Cell 15 Voltage	temp_6	
Pack Voltage Measure 65.82 VDC	65.4 Pack_Voltage	Cell 8 Voltage	4,2949	4,1036	Cell 16 Voltage	Temp_7	32

SoC Estimation Tuning

- Control pack current through drive cycle test
- Compare model output SoC with BMS algorithm

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

Drive Cycle Testing

BLOOMY

- Real-time CSV or TestStand-based
- Model in the loop
- Control & log parameters, measurements, BMS response in real-time
- Verify BMS response to driving personas
- Playback of actual test track data

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

BMS HIL CASE STUDIES

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

www.bloomy.com

LG xEV BMS SOFTWARE VALIDATION

- Proprietary BMS software algorithms developed, tested, validated by LG
- Simulate a wide range of battery systems
 - 500V packs for EV

DOMA

- 200-300V full hybrid, PHEV
- 48-200V micro, mild hybrids
- 12V start-stop systems
- Able to reconfigure HIL simulator for different xEV programs without new capital appropriations

JAGUAR LAND ROVER

- Evaluated 3 cell chemistries
- Validated 4 BMS architectures
- Accelerated firmware validation from more than 1 month to less than 1 week

"Major BMS firmware releases can now be rolled out within one week with good confidence of success, whereas similar projects in the past used to take well over a month, and with substantially less confidence."

Miguel Angel Gama-Valdez, Principle Engineer, Jaguar Land Rover

• Download whitepaper

https://www.bloomy.com/support/resources/white-paper/bms-hil-testsystem-helps-jaguar-land-rover-shorten-time-market-hybrid

SUMMARY

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.

Battery Management System HIL Testing

Grant Gothing

grant.gothing@bloomy.com

Peter Blume

peter.blume@bloomy.com

www.bloomy.com

Copyright © 2020 Bloomy Controls, Inc. All rights reserved.