
	

Presented at the VFS Modern Ops. with Future Integrated VMS Technical Meeting, West Chester, PA, Aug. 19-20,

2021. Copyright © 2021 by the Vertical Flight Society. All rights reserved.

 1

Evolving System Integration Labs in the Era of Digital Transformation:
A Brief Primer on Digital Transformation and its Implications for Test Systems and SILs

William N. (Bill) Eccles
Principal Engineer, Director of Corporate Development

Bloomy
South Windsor, CT, USA

ABSTRACT

The nature of systems and product engineering is changing rapidly with the introduction and application of Digital
Transformation and a toolset consisting of Model-Based Systems Engineering, the Digital Thread, and Digital Twin.
Each of these tools is briefly introduced and examined, and several characteristics for test systems which are necessary
for full digital transformation implementation are derived and enumerated. The progress that the author’s test equip-
ment manufacturing and design firm is making towards providing COTS products which interact with models, the
digital thread, and the digital twin is reviewed. Finally, a brief case study is reviewed which shows a 30% increase in
test efficiency after implementing one of the enumerated characteristics, which was made possible through the use of
COTS products.

INTRODUCTION
Bloomy has been applying automated test technologies into
all areas of the product lifecycle, from R&D and validation
to production and MRO, for the last 30 years across commer-
cial and military applications. Our position as external re-
sources for numerous organizations provides a unique
perspective on the state of test systems and allows us to de-
velop systems and methods which address multiple indus-
tries' needs. After consistent observation of the mil/aero
industrial complex’s struggles with adopting COTS technol-
ogies or with maintaining custom software and hardware in-
the-loop systems, we began an initiative starting in 2015 to
infuse the HIL market with COTS solutions which address
these struggles head on. These COTS solutions have enabled
enhanced test efficiency and reduced system delivery times,
and were key to reducing reliance on overburdened internal
technical resources.

During this same period, “Digital Transformation” rose to
buzzword-worthy status to the point where it was largely an
over-applied term and lost its meaning. [Ref. 1] However,
the systems engineering profession took Digital Transfor-
mation very seriously and has made great strides in rearchi-
tecting systems engineering to accommodate increasingly-
complex systems. The International Council on Systems En-
gineering (INCOSE) introduced concepts, such as model-
based systems engineering, the digital thread and twin, which
embody the intent of Digital Transformation. Because our
customers’ products are being used by organizations which

are in various stages of adopting these transformational
methods, we are actively adapting our systems to fully par-
ticipate in a Digitally Transformed systems engineering en-
vironment.

It is reasonable to assume that accommodating Digital Trans-
formation in test systems means merely building them in a
more flexible way in order to keep up with the ever-increas-
ing pace of the product cycle and the risks of last-minute
changes—especially during validation testing which usually
occurs coincident with product development. Though this as-
sumption is true, it is only partially responsible for the neces-
sity for test systems to be fully Digital Transformation-
capable, and it certainly does not address test systems outside
of the validation phase. As a provider of test systems which
address all phases of a product’s lifecycle, Bloomy recog-
nizes the imperative for all test systems, from concept to sus-
tainment, to be more than just flexible and responsive, but
also to be interactive with the new initiatives of Digital
Transformation-driven changes coming to systems engineer-
ing.

As Bloomy has seen in our customer base, “digital transfor-
mation” is being implemented in numerous different ways
and at inconsistent rates. Based on our observations, we will
describe at a fairly high level what we believe Digital Trans-
formation means to our customers by describing INCOSE’s
vision of digital-transformation-enabled systems engineer-
ing. We’ll then show why we believe test systems of all kinds
must be able to interact with the tools and methods of the

 2

vision. We’ll then show how Bloomy-developed COTS tech-
nologies address these transformational requirement. Fi-
nally, we’ll describe a brief, simple example of early, but
significant, improvements obtained using these technologies
in a systems integration lab (SIL) for helicopter flight con-
trols.

SYSTEM COMPLEXITY
In the beginning, systems engineering was done with paper
and pencil, draftsmen and women, and with real-world sys-
tem testing—risky tests placing humans at risk, especially in
vehicular systems. As available technologies increased, so
did system complexity. Figure 1, a graph of “thousands of
lines of code” for various aircraft models, gives us one rep-
resentation of just how complexity has grown in one span of
30 years.

Figure 1: Thousands of Lines of Code (KSLOC) Used in

Specific Aircraft over Time [Ref. 2]

One noted scholar, Christopher Alexander, has recognized
that systems are too hard to predict and test.

“Today more and more design problems are reaching in-
soluble levels of complexity.”

“At the same time that problems increase in quantity,
complexity and difficulty, they also change faster than
before.”

“Trial-and-error design is an admirable method. But it is
just real-world trial and error which we are trying to re-
place by a symbolic method. Because trial and error is
too expensive and too slow.” [Ref. 3]

Given the graph of Figure 1, it would be easy to think that
Alexander recognized this complexity in the mid-Nineties.
However, he wrote these words in 1964, well before software
was ever found on aircraft. So it’s clear that complexity was
a recognized problem well before systems became as com-
plex as they are today.

In the intervening years, of course, we’ve advanced to the
leading edge of Industry 4.0, the age of cyber-physical sys-
tems. These cyber-physical systems consist of

interconnected processes and products, and the number of
possible interconnections between them has risen to the point
of uncountability. A “simple” network of twenty nodes,
where a node can be a physical device or a software process
on a device, can be configured in 2190 different ways. [Ref. 4]
Clearly, we can’t test each of these configurations.

The number of interactions that we need to test, the configu-
rations we need to plan for, and the nature of the systems we
can build in the connected age of the “internet of things” is
so large that it has eclipsed our ability to manage it. We need
some method to ensure that the complexity is managed to a
reasonable level, or we need something that can help us test
all of the “important” interactions.

Taming Complexity with Model-Based Systems
Engineering
Model-Based Systems Engineering (MBSE) can help man-
age the increase in system complexity. [Ref. 5]

Formally, INCOSE defines MBSE as:

“…the formalized application of modeling to support
system requirements, design, analysis, verification and
validation activities beginning in the conceptual design
phase and continuing throughout development and later
life cycle phases.” [Ref. 6]

MBSE is significantly more complex than what is presented
here, [Ref. 7] but in practice, MBSE has several major char-
acteristics.

First, it is a replacement for document-based systems engi-
neering (DBSE), where many different distributed docu-
ments contain the characteristics, implementation, and
requirements of the system. Though we’ve advanced from
paper copies of documents to electronic copies of docu-
ments, they’re still just as easy to lose and difficult to find
amongst the various silos in the typical large project group.
Furthermore, they are poorly revision controlled. Products
such as IBM’s Rational DOORS have made inroads into con-
figuration control and traceability of requirements, tests, im-
plementation, etc., but the data in these sorts of tools remains
inconsistently expressed, making machine usage of the data
an impractical task of exporting and processing before it can
be used for automated purposes—a process that has to be re-
peated each time the data are updated.

These limitations give rise to the second and third major
characteristics of MBSE: the model is expressed in a formal,
machine-parsable language, System Markup Language
(SysML), no matter what kind of data (whether financial, en-
gineering, performance, etc.) is stored; and it is configuration
controlled using blockchain or equivalent technologies. The
last major practical characteristic of MBSE is that it is the
sole, authoritative source of truth. No other repository of the
data exists, thus ending countless versions of PowerPoint
presentations floating around on network drives with con-
flicting information.

These characteristics of MBSE are enablers for other bene-
fits. For example, the machine-parsable nature of the model

 3

allows for interaction with the model’s data in previously dif-
ficult (or impossible) ways which can enhance our abilities
to develop, update, maintain, and operate test systems. With
proper expression of the system’s interface types and quan-
tities, the test system’s design can be automatically generated
if not completely, then at least in part, and can be updated
quickly as requirements can, and will, change. If test require-
ments and limits are contained in the model, test scripts can
automatically be generated and updated as well. From the
perspective of a test engineer, the more data available in the
model relevant to the test system and unit under test, the
more opportunities there are to automate the life cycle and
operations of the test systems.

The interaction between test systems and models isn’t con-
strained to unidirectionality. A bi-directional relationship be-
tween them enables, for example, automated analysis of
results, tuning of the model, predictions of reliability and
trend analysis, randomized “fuzz” testing and coverage anal-
ysis, and, with the latest developments, [Ref. 8] artificial in-
telligence analysis of the system and data. And because of
the nature of the model, all results are tied back to system
requirements in the ultimate form of traceability.

Whether the test system is involved in verification, valida-
tion, production, or field support, for most efficient and ef-
fective development, maintenance and operation, the system
must be able to interact with the model. Though some com-
panies have made strides in this direction, the toolsets of
MBSE are still largely unconnected to the test system lifecy-
cle. Bloomy is working to fill this gap with our Digital Ena-
blers for Test (DEFT™) which will include connectors
between MBSE toolchains, our test equipment design pro-
cesses and our customers’ test scripts and methods.

Enabling Agility with Digital Twins and Digital
Threads
Two other tools in the digital transformation toolkit are the
digital thread and digital twin.

The connection between the model and the product’s manu-
facturing processes was initially called the digital thread.
The term originated at Lockheed Martin sometime prior to
2011 and “described using 3D CAD data to directly drive
CNC (computer numerically controlled) milling or compo-
site programming systems for carbon fiber placement. In
both cases, the physical piece is the result of an unbroken
data link that stretches back to the original computer model
of the part; the unbroken data path was the digital thread.”
[Ref. 9] (author’s emphasis)

As emphasized above, the key concept of the digital thread
is the unbroken connection path that the data take from origin
to destination. Similar to the chain of custody for evidence,
the digital thread remains in tact, traceable, with no discon-
nects between source and destination. In practice, an updated
requirement would flow through the digital thread and influ-
ence the manufacturing process appropriately.

Eventually, though, the idea of digital thread extended past
the CAD data and CAM programs in both directions leading

to the concept of a digital twin. As described on DigitalEngi-
neering247.com, “In the [2013] USAF Global Horizons re-
port on technology visions, digital twin is defined as ‘the
creation and use of a digital surrogate of a material system to
allow dynamic, real-time assessment of the system’s current
and future capabilities.’ The ‘digital surrogate’ is a ‘physics-
based technical description of the weapon system resulting
from the generation, management and application of data,
models and information from authoritative sources across the
system’s lifecycle.’” [Ref. 10] Here, for what is reportedly
the first time, is a definition of a digital twin (or digital sur-
rogate), and the definition makes clear that the digital twin
involves models and all data associated with the operational
and future operational characteristics of a system.

What is not made terribly clear is that the digital thread is the
enabler of the digital twin, with the digital twin being a high-
fidelity digital representation mirroring the lifespan of a par-
ticular product and particular serial number. The digital twin
can be one or more high-fidelity computational models, com-
bination of models, or tools which simulate and capture the
life history of the related instantiation of the product. [Ref.
11]

In the same report, the USAF advocates use of a “tightly-
integrated digital thread and prototyping process to enable
agile development.” The report also describes the USAF’s
view of the combination of the digital thread and digital twin
as the “game-changer that provides the agility and tailorabil-
ity needed for rapid development and deployment, while also
reducing risk.” (author’s emphasis, both excerpts)

 4

Figure 2, from an academic paper which does an admirable
job of expressing the mathematics of digital-thread-based de-
sign, shows an excellent representation of the way the digital
thread connects both forward and backward through the
product lifecycle.

Feedback from late stages can be used to influence future
choices and reduce uncertainty in design parameters and pro-
cess costs. This information may also reveal more efficient
operational strategies, and every time these decisions are
made. Each decision changes the state of the digital thread.

Taken together, the USAF’s identification of digital
thread/digital twin processes and the above graphic which
expresses the need for the product to be able to react to both
early-life changes as well as late-life discoveries, emphasizes
that any test equipment used during these processes may be
called upon to change as rapidly as the product may change.
During early-stage iterations of the product’s design, risk re-
duction tests using subsets of the system may be needed. But
then as the product grows, so must the test system, preferably
in such a way as to preserve both the investment in software
and hardware made to date. This problem, which involves
both hardware agility and software agility, has been solved
to a large extent with Bloomy’s Digital Enablers for Test
(DEFT™) and the Bloomy architecture for Mil/Aero Simu-
lation Systems, both of which are described below.

Distilled Characteristics of Digital Transfor-
mation-Ready Test Systems
In the previous sections, we’ve enumerated several charac-
teristics of digital transformation which have direct implica-
tions for test systems. Distilled below are these
characteristics:

1. The test system design must be able to be derived and
controlled directly from the digital thread. Each design
element must be traceable to an underlying requirement.
Automatic, “pushbutton” test system design and manu-
facturing would be ideal.

2. The test system must be able to interact with the system
model by retrieving tests, test limits, measurements, de-
sign parameters, methodologies, etc., from the model

and digital thread. The resulting tests must be traceable
to an underlying requirement.

3. Changes to the model and/or digital thread must drive
changes to the test system’s hardware and software. The
software and hardware should be implemented in such a
way that the cost of change implementation is not pro-
hibitive.

4. Corollary: the underlying mechanisms of the hardware
and software implementation should be agile and flexi-
ble in nature, easily changed quickly.

5. Data generated by test systems must be returned to the
digital thread and/or digital twin and must be compatible
with analysis tools which may be used to improve the
system/product.

6. None of these requirements are dependent on any other,
and any level of implementation of these requirements
should yield an improvement to the product lifecycle.

We assume that this list is far from exhaustive, but it’s at
least a good start. We are also sure that this list will continue
to evolve as the state of digital transformation continues to
advance.

ACHIEVING DIGITAL TRANSFORMATION

FOR TEST SYSTEMS:
ONE COMPANY’S PROGRESS

At Bloomy, we’ve already tackled some of the above re-
quirements at some level in the course of improving our own
products and processes. Two products that we currently pro-
vide are used to partially address these requirements, and
we’re actively developing the products to further fulfil these
needs. In this section, we’ll describe the EFT product, which
is becoming the DEFTTM product previously referenced, and
the Bloomy Mil/Aero Simulation Reference System.

The EFT, originally so-named because it was designed as a
software toolkit for Electronics Functional Test, provides
many capabilities which Bloomy has used in our own cus-
tomer deliveries for well over a decade. It grew out of our
own need to meet some of the above requirements in our own

stage t
yt 2 Yt Input variables and associated space

at stage t
ylt, y

a
t , y

m
t Input variables for loads, material al-

lowables, and manufacturing model
parameters at stage t, respectively

�t Digital Thread transition model at
stage t

� Volume penalty parameter
✏ Strain tensor (in Voigt notation)
⌫t Measure associated to Yt

�lt lth feature basis function for policy

parametrization at stage t
µt Policy function at stage t
⇡t Policy at stage t
 k
t kth spatial basis function for policy

parametrization at stage t
� Stress tensor (in Voigt notation)

Subscripts

t 2 N0 Non-dimensional time index or stage

Superscripts

⇤ Designation for optimal quantity or
function

I. Introduction

Digital Thread introduces the idea of linking information generated from all stages of the product lifecycle
(e.g., early concept, design, manufacturing, operation, post-life, and retirement) through a data-driven
architecture of shared resources (e.g., sensor output, computational tools, methods, and processes) for real-
time and long-term decision making [1, 2]. Furthermore, Digital Thread is envisioned to be the primary
or “authoritative” data and communication platform for a company’s products at any instance of time
[2, 3]. It is important to distinguish the related concept of Digital Twin [2], which is a high-fidelity digital
representation to closely mirror the life of a particular product and serial number (e.g., loading history, part
replacements, damage, etc.). The Digital Twin can come in the form of a high-fidelity computational model
or a combination of models and tools of su�cient fidelity to simulate the life history of the corresponding
product. Digital Thread then can be viewed as containing all the information necessary to generate and
provide updates to a Digital Twin.

Of particular relevance is the process in which Digital Thread can be used in the design of the next
generation of products as illustrated in Figure 1. Here, multiple stages across the product lifecycle feed in-
formation into the Digital Thread. Such information can be used to make informed choices on future designs,
as well as to reduce uncertainty in design parameters and process costs. Additionally, such information may
uncover more e�cient strategies for operation. Carrying out design decisions adds new information to the
product lifecycle, changing the state of the Digital Thread. This whole process can be mathematically de-
scribed with a data-driven design approach and decision problem under uncertainty. This paper formulates
that mathematical description using the tools of Bayesian inference and decision theory.

Figure 1. Illustration of engineering design with Digital Thread.

To add context to this discussion, consider the design of a structural component where the operational
loads are uncertain. Practical approaches to deal with such uncertainty include over-conservative designs,
damage tolerance policies, or redesigns and retrofits if analysis proves insu�cient to ensure component
integrity. Though the first generation of the component design may necessarily succumb to such practical
approaches, data collected during the operational life of the first generation can be fed back and used to

2 of 21

American Institute of Aeronautics and Astronautics

Figure 2: Illustration of engineering design with Digital Thread [Ref. 12]

	

 5

development processes, and as we wrote the software, we
recognized that it had intrinsic value to customers who would
otherwise not purchase a test system from us and thus sell it
as an independent product.

One major function which the EFT provides is hardware and
measurement abstraction layers. An abstraction layer is a
software construct which disconnects a higher-level of soft-
ware from an underlying implementation, whether hardware
or software. In the real world, a steering wheel is an abstrac-
tion layer because you can turn it and the vehicle’s wheels
turn whether the underlying steering rack is manual or
power. Similarly, abstracting away the hardware in a test en-
vironment allows tests to be written irrespective of the un-
derlying hardware. The test may be written in a hardware-
agnostic fashion, making the test more portable and making
it much easier to change the underlying hardware.

Similarly, a measurement abstraction layer allows the test
script to contain an instruction to take a measurement with-
out any underlying knowledge of the hardware or software
required, perhaps using a set of hardware. As Figure 3 shows,
the measurement abstraction layer is a higher level of ab-
straction than the hardware abstraction layer. It may be a
complex MAL, where the underlying hardware is completely
unknown, or it may be less complex and have some
knowledge of the underlying hardware.

Figure 3: Abstraction Hierarchy [Ref. 13]

In this figure’s example, the MAL has no idea whether a dig-
ital multimeter or an analog-to-digital converter will be used,
nor does it know what switching is required to accomplish
the measurement. A test script written at the HAL level
would require all three steps to be explicitly written, but the
same test script written at the MAL level need only know the
measurement to be performed.

Both of these abstractions help attain test equipment charac-
teristics 2-4, above. Consider that the system model in the
digital thread may require “The UUT voltage must be greater
than or equal to 0.5 VDC” (expressed in SysML, of course).
Bloomy’s MAL is able to implement the test sequences re-
quired to perform the measurement. However, a human is
necessary to read the natural-language requirement and

translate it into the appropriate MAL step. This is a fast pro-
cess (characteristic 4), though we are working to migrate this
capability to a new version of the EFT (DEFT, mentioned
previously) which will be able to extract the requirement
from SysML and drive the test system automatically—only
one very important connection remains to be made. (Bloomy
is actively seeking a lead user to work with in this capacity.)
We anticipate that this step will require vendor-specific con-
nectors for each MBSE package.

The EFT also has a plugin which addresses providing data
back to a digital thread or other database (characteristic 5).
It uses Structured Query Language (SQL) and a database en-
gine connector, and for companies which use standard data-
base systems, this capability is ready, out of the box. Again,
however, where an MBSE package is being used, modifica-
tion will be required to provide a vendor-specific connection
to return data from the test system to the digital thread.

Similarly, we have tackled the challenges of rapid deploy-
ment of test systems by implementing a hardware design and
build architecture which help address test equipment charac-
teristics 1, 3, and 4. Twenty years ago, the state-of-the-art in
test equipment system design incorporated error-prone
spreadsheets, laboriously-created CAD schematics, and tedi-
ous wiring-to-print, yielding something which looked like
Figure 4. Nothing was model-driven (though, to be fair,
model-based design did not even exist). Changes, though
possible, were certainly inconvenient and expensive. If the
resources were available, several companies surveyed by the
author implemented large printed circuit board assemblies
which replaced the tedious wiring, but which were expensive
to design and difficult to change. Again, neither design speed
nor agility was a characteristic of these systems.

Figure 4: The back of a typical closed-loop test system

circa 1999 [Ref. 14]

Since 2015, however, Bloomy has been working to develop
the Bloomy Mil/Aero Simulation Reference System, which

ni.com/automatedtest

Hardware and Measurement Abstraction Layers3

It’s important to understand the difference between a HAL and MAL. A HAL is a code interface
that gives application software the ability to interact with instruments at a general level, rather
than a device-specific level. Typically a HAL defines instrument classes, or types and standard
parameters and functions that those instruments must conform to. In other words, the HAL
provides a generic interface to communicate with instruments from the instrument’s point of
view. A MAL is a software interface that provides high-level actions that can be performed on a set
of abstracted hardware. These actions are a way of exercising multiple instruments to perform
a task from the UUT’s point of view. Together these make up a hardware abstraction framework.

ATE SOFTWARE CHALLENGES

Rushed development cycle

Poorly defined requirements

Evolving test procedure

Software development begins before hardware design is
complete

Separation between software and hardware engineers

DEVELOPMENT

Long product life cycle
�� Failing or obsolete instruments
�� Instrumentation changes

Product updates
�� Test procedure changes
�� New hardware required

Manufacturing engineer is often not the original
test developer

MAINTENANCE

BENEFITS OF SOFTWARE ABSTRACTION

Decouples hardware and software

Disconnects sequence development from code (driver)
development

Provides common API for instrumentation

Optimizes code reuse

Reduces developement time

Separates roles of architect versus test developer

DEVELOPMENT

Mitigates risk of obsolescence or hardware changes
�� Reduces reliance on specific instruments
�� Allows hardware changes without modifying test sequence

Reduces code complexity for future test support/changes

Increases compatibility of code across platforms

MAINTENANCE

TEST EXECUTIVE

MEASURE 5 V RAIL ON UUT

MAL

1. SWITCH: ENERGIZE MUX CHANNEL 7

2. DMM: MEASURE VOLTAGE AT 100 V RANGE

3. SWITCH: DE-ENERGIZE MUX CHANNEL 7

HAL

INSTRUMENTATION

Figure 1. High-Level Overview of an Abstraction Framework

 6

is modular COTS hardware and brings design and implemen-
tation up from the signal/wire level to the cable level. We
have also developed our Universal Test System (UTS) plat-
form which makes use of instrumentation assemblies which
can be quickly connected together to form a complete test
system from a few standard assemblies. In both platforms,
COTS cables are used to connect from the mass interconnect
(UTS) or Bloomy ThroughPoint™ interface panel (simula-
tion systems), and the signal conditioning and instrumenta-
tion. This implementation allows design by cable instead of
design by wire, so that systems become plug-and-play and
significantly reduce construction effort and troubleshooting.
This build process has allowed us to reduce system design
and construction times from 6-8 months to 6-10 weeks.

By designing and using modular systems, we can create sys-
tems from scratch more quickly and efficiently from the pre-
liminary I/O of a prototype product. If the product’s
requirements change, the system can be upgraded later as
more capability is needed. This flexibility is a great feature
made possible by modular, COTS hardware, but it would be
useless if the software configuration of this system, which is
often quite complex, weren’t just as flexible and easily de-
ployable as the hardware.

Both hardware and software flexibility and agility are re-
quired to achieve all of the above requirements. We and oth-
ers have a long way to go before we’ve achieved total
interconnection with the digital thread, but we’re actively
working to meet this milestone by working with our custom-
ers and implementing whatever level of thread-connected-
ness they are ready to achieve, as we’ll see next.

DIGITAL TRANSFORMATION MEETS A
SYSTEM INTEGRATION LAB

In 2016, a global air, space, and defense contractor selected
the Bloomy Mil/Aero Simulation Reference System for six
test systems in a helicopter system integration lab. The sys-
tems were used to verify mission systems, flight controls, en-
gine controls, and other control systems for an airframe. The
technologies used which are most relevant to digital transfor-
mation are:

• NI PXI, SLSC, VeriStand, TestStand and Requirements
Gateway

• IBM Rational DOORS

• Bloomy’s HAL/MAL (EFT), numerous device drivers,
and other integration hardware and software.

It is worth noting that the platform is a very old airframe and,
as such, “pushbutton design” was nigh impossible. Emula-
tion of multiple layers of control logic, ranging from relay
and switch logic of the 50s to intermediate levels of flight
automation of the 90s, all had to be simulated to address sev-
eral different airframe configurations. So test equipment
characteristic 1, above, was impossible to achieve. Further-
more, the technologies associated with the Bloomy

Simulation Reference System were still under development,
and it took us several years to get to the point of being able
to do a fairly close approximation of “pushbutton” (or
scripted) design.

Because of the platform’s long lifespan, many “unknowns”
were discovered during the process of integrating the test
systems with the units under test. Fortunately, the use of the
largely-COTS Bloomy Simulation Reference System al-
lowed for re-cabling to adjust the system to meet these pre-
viously-undiscovered requirements. Additional signal
conditioning cards were added and cabled into the system,
and though the system was the first of its kind ever built, the
changes were made reasonably smoothly since they did not
require digging through nests of wires. This “cable-level”
technology was made possible because Bloomy is a test
equipment company and invested millions of dollars and tens
of thousands of man-hours into developing this and other
test-centric products.

In rejecting the company’s internal real-time test framework
in favor of the COTS NI VeriStand and TestStand products,
the company made two significant gains. First, no further de-
velopment was required to the internal real-time test frame-
work which has no capability to integrate with a
requirements management system, much less the platform’s
digital thread. Given budgetary constraints usually associ-
ated with development of internal tools—namely they’re
usually developed with capital funds and improvements are
difficult to justify since they rarely demonstrate a return on
investment—and the decreasing number of personnel who
are available to continue maintenance of the toolset, the min-
imal extra cost of the COTS software suite was well-justi-
fied.

Second, the company was able to take advantage of NI’s Re-
quirements Gateway product. The Requirements Gateway
product maps requirements to test cases and coverage reports
and enables test results to automatically inform the digital
thread with the results of testing. Once the mapping of re-
quirement to tests was created, test engineers were able to
focus on creating test cases and making improvements to the
product without worrying about requirements tracing. They
were also able to input results of non-automated tests (those
that required manual interaction with the system, for exam-
ple) which were also mapped back to requirements. Finally,
generating coverage reports was automated and prevented
days of coverage analysis. The result was that test efficiency
increased by 30%.

CONCLUSION
Digital Transformation is still in its infancy, and the tools re-
viewed herein continue to evolve. Bloomy has witnessed a
sudden uptick in the number of companies which are imple-
menting some form of Digital Transformation. We are not,
however, seeing very much consideration being given to how
test systems are expected to fit into these initiatives. As a re-
sult, we expect that as more companies extend their Digital

 7

Transformation initiatives, more emphasis will be placed on
this integration. For new test systems to best be able to inter-
act with the digital thread, digital twin, and models, COTS
systems will offer the best way to achieve the test systems
characteristics enumerated above, and that technologies like
those offered by Bloomy will be an efficient means of
achieving these goals.

Author contact: Bill Eccles Bill.Eccles@Bloomy.com

REFERENCES
1. https://techcrunch.com/2021/05/28/once-a-buzzword-

digital-transformation-is-reshaping-markets/

2. https://savi.avsi.aero/about-savi/savi-motivation/expo-
nential-system-complexity/

3. Alexander, Christopher, Notes on the Synthesis of Form,
Harvard University Press, Cambridge Massachusetts,
1964.

4. https://www.omgwiki.org/MBSE/lib/exe/fetch.php?me
dia=mbse:incose_mbse_iw_2020:20200126_in-
cose_iw_mbse_transformation_v1.pdf

5. https://discover.3ds.com/sites/default/files/2020-
05/simplifying-complexity-through-model-based-sys-
tems-engineering-no-magic-case-study.pdf

6. INCOSE.org

7. See INCOSE.org for more information about the other
aspects of MBSE and other ways in which digital trans-
formation is being addressed in systems engineering.

8. E.g.:
https://www.ni.com/en-us/about-ni/newsroom/news-re-
leases/ni-completes-acquisition-of-optimalplus.html

9. US Air Force, Global Horizons Final Report: United
States Air Force Global Science and Technology Vision
– AF/ST TR 13-01, United States Air Force, 2013. Ex-
cerpted by https://www.digitalengineering247.com/arti-
cle/a-digital-stitch-in-time/, excerpted from

10. Ibid.

11. Singh, Victor and Willcox, Karen E., “Engineering De-
sign with Digital Thread,” AIAA Journal 2018 56:11,
4515-4528.

12. Ibid.

13. Gothing, Grant, Hardware and Measurement Abstrac-
tion Layers, National Instruments, 2016.

14. https://download.ni.com/evaluation/core-
test/HAL_MAL_Web.pdf

15. Author’s photo

